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J. Phys. A: Math. Gen. 18 (1985) L917-L921. Printed in Great Britain 

LETTER TO THE EDITOR 

The exact location of partition function zeros, a new method 
for statistical mechanics 

D W Wood 
Mathematics Department, University of Nottingham, Nottingham NG7 2RD, UK 

Received 31 July 1985 

Abstract. A new mathematical mechanism is proposed for locating exactly sections of the 
locus of the limiting distribution of partition function zeros for model systems in statistical 
mechanics. Illustrations and applications to the two-dimensional k ing  model and the hard 
square lattice gas are given; the exact location of the branch point singularity for the hard 
square lattice gas on the negative activity z axis is conjectured to be the negative root of 
the polynomial 

2z6+9z5+42z4+90z3+96z2 + 272 + 2 

which is closest to the origin, z = -0.119 392.. . . 

The purpose of this letter is to report on a new method for locating exactly portions 
of the curves formed by the limiting distribution of the zeros of partition functions in 
the lattice models of statistical mechanics. The general formulation of statistical 
thermodynamics in terms of the analytic structure of the grand canonical partition 
function E was introduced by Yang (1952) and Yang and Lee (1952) in terms of the 
zeros of Z in the complex plane of the activity z = ePr, where for a finite number of 
particles E is a polynomial in z. This formulation carries over into many problems in 
statistical mechanics formulated as lattice models since the appropriate partition 
function on a finite lattice is also a polynomial in a suitably chosen variable, at least 
to within a simple analytic multiplying factor. Well known examples of this are all 
king type models and lattice gas models (Fisher 1965, Domb 1974, Wood 1975, Griffiths 
1972). The new method proposed here is a mathematical mechanism for obtaining 
increasingly large portions of the limiting locus of the distribution of partition function 
zeros exactly, and is suggested by a study of the manner in which both the distribution 
and location of these zeros for the two-dimensional Ising model in the complex 
temperature plane are systematically constructed in terms of semi-infinite strips of the 
lattice. In a recent letter (Wood 1985), the author showed that the zeros of the general 
anisotropic Onsager solution could be constructed in terms of the eigenvalues of the 
transfer matrix (Onsager 1944). It is implicit in this work that exact portions of the 
locus (or of a continuous sheet distribution) can be obtained from the eigenvalues of 
Jinite transfer matrices for n XCO strips of the quadratic lattice. The manner in which 
this construction occurs very strongly suggests a general mathematical mechanism for 
the process, and relates to the theory of algebraic functions. 

As is well known, the partition function for a model system in the transfer matrix 
formalism is a simple symmetric function of its eigenvalues 
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where n is the number of periodic repeats (cyclically connected) of a portion of a 
lattice, thus for an n x m section (cyclically connected) of the quadratic lattice Ising 
model a= 2". Z is of course an analytic function of real temperature and by a suitable 
choice of variable can be expressed as a polynomial. The eigenvalues however are 
algebraic functions and many of them possess branch point singularities in the complex 
temperature plane. These branch point singularities appear to be the mechanism by 
which the natural boundary of the limiting partition function per site is constructed 
through a sequence in which Cl + 00. In the Onsager solution the pattern is very simple 
and also very beautiful. Here the eigenvalues of any m xm strip are in the form 

m 

Ak = ( 2  sinh 2K)"" n exp(*&l), k = 1 , 2 , .  . . , 2m-' ( 2 )  
t = 1  

which is the set containing the maximum eigenvalue ( K  real), only an even number 
of negative signs are allowed, and 

cosh y r =  s+s- ' -cos(rn/m),  s = sinh 2 K .  (3) 

Thus the functions eyr each have two branch points at cosh yr = *l with a natural cut 
along the line segment 

-1 c cosh yr 1 (4) 

in the cosh yr plane. This cut places s on a segment of the unit circle s =ei' defined 
by 

( 5 )  

Thus the limiting locus of zeros, which is the whole circle s = e;', is already discernable 
in the branch points (and their cuts) of the eigenvalues ( 2 )  offinite transfer matrices. 

The 2 xco strip for example has a 4 x4 transfer matrix with a pair of eigenvalues 
which have branch points at 

s = exp(*ia/3) and s = exp(*i2n/3) ( 6 )  

n/3 < * < 2n/3 and - 2 ~ 1 3  < t,b < -n/3.  (7) 

-sin2( r n / 2 m )  s cos + c cos2( r n / 2 m ) .  

with a cut along the unit circle over 

Now this pattern is clearly repeated for the sequence of m xcc strips where the 
eigenvalues produce cuts 

- 1 cosh y, 1, r = I ,  3 ,5 , .  . . ,2"-' (8) 

which represent a sequence of overlapping arcs on the circle s = e'@. In this way on 
the sequence m=1 ,2 ,  ..., borh the exact location and a distribution of zeros is 
constructed, and in the limit m + 03 the circle segments will finally become the whole 
circle and intersect the real axis at the limiting branch points s = *l (ferro-, and 
antiferromagnetic critical points). 

It is of course natural to expect such a simple and appealing picture to emerge in 
the Onsager solution since the model is after all exactly solved for any arbitrary m x n 
finite section of the lattice, however, a basic mathematical structure which underlies 
the above is suggested, which may have an origin in the theory of algebraic functions 
which connects the branch points of Ak with the natural boundary of the maximum 
eigenvalue in the thermodynamic limit. The mathematical structure which summarises 
the above in its most concise form is that if T,(Z) is the transfer matrix for some 
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semi-infinite system of a size characterised by m with z some suitably chosen variable 
(not necessarily one in which 2 is a polynomial), then the limiting distribution of 
zeros is in part traced out by the function 

Rm(z, 4 )  = 0, 0 s 4 s 2 l r  (9) 

1 T,,, ( z ) - A I I = 0 ( l o a )  

I T , ( z ) ~ - ' + - A Z ~ = O .  ( lob)  

where R,,,(z, 4 )  is the resolvent between the two polynomials in A 

and 

The branch points of the eigenvalues Ak are at the limit 4 + 0 ,  and the function (9) 
traces out trajectories in the complex z plane emanating from the branch points and 
returning to them on completing the circle e"; thus in the Onsager case above, on the 
2 xm strip (9) traces out the two arcs 

sinh 2K = e", lcos +I< 4. 
Listed below are the results of applying this formalism to (a) the Ising model on 

the square net with screw boundary conditions, (b) the Ising model on the honeycomb 
and triangular lattices, (c) the hard square gas on the quadratic lattice; the details of 
the method and of these applications will be the subject of a further publication. 

The above picture for the Ising model on the quadratic lattice when the toroidal 
boundary conditions are changed to screw boundary conditions (Krammers and 
Wannier 1941) is preserved; again a large portion of the locus appears at an early 
stage. With a screw pitch of 2 equation (9) in the z = e-2K plane produces a large part 
of the two circles 

z = * I  +Jz e'" ( 1 1 )  

z = 318 * id718 and z = -31 8 * id71 8 ( 1 2 )  

(Fisher 1965). Branch points 

are produced, and the cuts connecting each complex conjugate pair cover the circular 
arcs which avoid intersecting the real axis at the points a-1 and - a + l  but do 
intersect the real axis at the complex temperature points z =  * ( l + d ) .  In this case 
one also observes that a hyperbolic extension of (9) to pure imaginary angles 4 
completes the two circles and adds the real line segments /zI > 1. 

Syozi (1951) has given the eigenvalue structure of strip divisions of both the 
honeycomb and triangular lattices. The limiting distribution of zeros for these two 
lattices has so far only been inferred on the assumption that they are the singularities 
in the integrands of the integral expressions for the limiting partition function per site, 
namely 

L l o z T ~ 0 2 n l n [ C - D ( c o s  41r2 Bicos  4 + ~ 0 ~ ( 6 + 4 ) ) ] d B d 4  (13)  

where, for the honeycomb lattice 

C = 1 + cosh3 2K, D = sinh' 2K 

and for triangular lattice 

C = cosh3 2 K + sinh3 2 K ,  D = sinh 2K. 
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On this assumption the locus of zeros for the honeycomb lattice in the cosh 2 K  plane 
has two sections, first a circle 

cosh 2 K = 1 + ei' 

-1 d cosh 2K S i. 

(16) 

(17) 

and secondly a line segment 

The locus for the triangular lattice is the same except it is in the coth2K plane by 
duality. The solutions to (9) produce the same constructional picture as in the Onsager 
case, branch point pairs appear on the circle (16) with cuts connecting them along 
arcs which avoid the real axis, and also branch point pairs appear on the real cosh 2K 
axis, but now the cut produced by (9) traces out the whole of the line segment (17). 

The hard square gas (quadratic lattice) model has been chosen as an example of 
a problem which, although simple in some sense, has so far resisted all efforts to obtain 
an exact solution (Baxter 1982, Baxter et a1 1980, Wood and Goldfinch 1980, Gaunt 
and Fisher 1965). An application of (9) to this model suggests that the branch point 
singularity of E(z )  in the thermodynamic limit lying on the negative real activity z 
axis has probably been located exactly by taking a 4 x CO strip. 

Firstly for a 2 xco lattice (9) produces two branch points at 

~ = - 3 - 2 J z  and - 3 + 2 J z  (18) 

with a cut which simply connects the two points along the negative axis. On moving 
up to a 4 x w  system the first thing we notice is that this cut is again produced in the 
second largest block of TJz) (using a cyclic group reduction to irreducible representa- 
tions of T ) ,  and that the largest block which is of degree 3 produces branch points at 
the roots of the polynomial 

z8+4z7+28z6+64z5 + 178z4+212z3+ 88z2+ 16z+ 1 (19) 

z = - 1  and z = -0.125 981 . . . (20) 

-0.8806 f 3.47343, -0.3328 * 3.0601i, -0.2236 * 0.1234i. (21) 

which has two negative roots at 

and three complex pairs at 

Here equation (9) is in general a polynomial of degree 12, and on rotating 4 in (9) 
we may expect to trace out an exact portion of the limiting distribution; movement 
of the trajectory may well complete the whole negative axis cut. A natural limit point 
occurs where (9) becomes the polynomial 

2z6 + 9z5 + 42z4 + 90z3 + 96z2 + 27z + 2, (22) 

z = -0.1 19 392. .  . and z = -0.250 074. . . . (23) 

which has two negative roots at 

The only estimate of the singularity in E on the negative real axis is that of Gaunt 
and Fisher (1965) using low density expansions, which was 

(24) z = -0.1 194 f 0.0002. 

On this basis I suspect that this branch point is the exact root of (22) closest to the origin. 
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Since the generator (9) can be constructed by hand for low orders in a variety of 
models, for example the three-state scalar Potts model on the square lattice has a block 
in T2 which is quadratic, it is possible to obtain polynomial generators of trajectories 
which are essentially the exact equations 

z = 4 4 )  ( 2 5 )  

for sections of the limiting distribution. There is a real possibility of extending these 
in the form of a closed curve (using a hyperbolic form of (9)) 

Y = Y ( X )  

in the complex plane. In the Ising model case for example, it would be difficult to 
resist the thought that the distribution was in fact the whole circle in the s plane! 
From a computational viewpoint much greater possibilities present themselves since 
the orbits under (9) can be computed for quite large transfer matrices, using group 
operations which leave the Hamiltonian invariant; an application to the three- 
dimensional Ising model is well within range. A full account of the work in this letter 
will appear elsewhere and application of the method to a variety of model systems is 
presently in progress. 

References 

Baxter R J 1982 Exactly Soloed Models in Statistical Mechanics (New York: Academic) 
Baxter R J, Enting I G and Tsang S K 1980 J. Stat. Phys. 22 465 
Domb C 1974 Phase Transitions and Critical Phenomena ed C Domb and M S Green (New York: Academic) 

Fisher M E 1965 Lectures in Theoretical Physics vol 7c (Boulder: University of Colorado Press) p 1 
Gaunt D S and Fisher M E 1965 1. Chem. Phys. 43 2840 
Griffiths R B 1972 Phase Transitions and Critical Phenomena ed C Domb and M S Green (New York: 

Gaunt D S and Fisher M E 1965 J. Chem. Phys. 43 2840 
Krammers H A and Wannier G H 1941 Phys. Rev. 60 252 
Onsager L 1944 Phys. Rev. 65 117 
Syozi I 1951 Prog. Theor. Phys. 6 306 
Wood D W 1975 Statistical Mechanics vol 2 (London: The Chemical Society UK) p 55 
- 1985 J. Phys. A: Math. Gen. 18 LA81 
Wood D W and Goldfinch M 1980 J. Phys. A: Math. Gen. 13 2781 
Yang C N 1952 Phys. Reo. 85 808 
Yang C N and Lee T D 1952 Phys. Reo. 87 404 

p 357 

Academic) 


